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Introduction

* Lung vessel detection is a key research topic in
pulmonary CT image processing, since accurate
vessel segmentation is an important step in
extracting imaging bio-markers of vascular lung
diseases.

Hessian-based filters are popular and perform well
in lung vessel enhancement, according to the
VESSEL12 challenge [2]. However, global or local

thresholding the vesselness does not provide
accurate binary results.

Graph-cuts [1] methods consider the segmentation
a labeling problem. As it incorporates neighborhood
information and combines features easily, we

implemented  graph-cuts for lung  vessel

segmentation.

Datasets

In-house data

Clinical image data was acquired of two patients on a
Toshiba Aquilion 16 detector row CT scanner, without
contrast media. Two sub-volumes on the boundary of
pulmonary lobes were extracted. The size of sub-
volumes are around 70-70-120 with voxel size of
0.65:0.65-0.5mm?3. Vessels, bronchi and fissures were
manually labeled by an expert.

VESSEL12 challenge data

CT scans of 20 patients were collected by the
VESSEL12[2]. The CT scan size was around 512-512-400,
with voxel size around 0.7:0.7:0.7mm3. The scan data
and lung masks were provided by the organizers.
Manual labeling was performed on pre-generated
points, and only those points were kept, that obtained
equal labels from three independent observers. There
were nine categories in the reference standard to
perform a comprehensive evaluation of vessel
segmentation.

Methods

Vessel enhancement filter

The response of traditional Hessian-based vesselness
filters is low at the vessel bifurcations and boundaries, due
to an overly simplified cylindrical model. To remedy this,
we used the strain energy filter [3], which is based on
strain energy density theory from solid mechanics.

Graph-cuts for lung vessel segmentation

 Graph representation
The memory requirements of graph representation for
high resolution pulmonary CT scans is very high. A
thresholding strategy was adopted to cope with the
memory requirements, by excluding voxels from the
background (Figure 1). The sparse adjacency matrix
analysis method was designed to determine the n-
edges in a memory-efficient way.

 Graph-cuts cost function
A new cost function was desighed by combining
appearance and shape features. For the cost function
optimization we used GCMex 1.9 from Matlab [1].
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Figure 1: Graph structure representation of the proposed method.

Graph-cuts energy function
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Figure 2: Segmentation result on a reference region, (a) reference region in the CT, (b) one slice of the extracted
region, (c) manually segmented reference standard (vessels only), (d) segmentation result of the proposed method.

Table 1: Evaluation results of methods on reference standard data sets.

Datal

Data2

Enhancement binarization Recall

Precision

F1 score Recall Precision F1 score

threshold
graph-cuts
threshold
graph-cuts

0.734
0.823
0.708
0.733

0.508
0.478
0.729
0.792

0.601
0.605
0.718
0.761

0.629
0.643
0.622
0.667

0.515
0.487
0.712
0.715

0.566
0.554
0.664
0.690

Frangi
Freiman's method [4]
Strain energy

Conclusions

Strain energy

e A graph-cuts based segmentation method was
proposed to extract the pulmonary vessels in
thoracic CT images.

* A new cost function was designed by combining
appearance and shape features.

* An efficient strategy was adopted to cope with the

Table 2: Evaluation results of the VESSEL12 data-set: Az score, Specificity and Sensitivity of our submission across
all categories. (Categories 1: Principal, 2: Small Vessels, 3: Medium Vessels, 4: Large Vessels,

5: Vessel/Airway Wall, 6: Vessel/Dense Lesion, 7: Vessel/Mucus-filled bronchi, 8: Vessel-in-lesion/Lesion, 9:
Vessel/Nodules).

memory requirements of a graph representation. 1 2 3 4 5 6 7/ 3 9
* A competitive performance was obtained from the Az 0.975 0.953 0.977 0.993 0.867 0.481 0.331 0.661 0.238
Zva'uat'on of in-house data and VESSEL12 challenge Specificity 0.910 0.865 0.910 0.979 0.588 0.239 0.112 0.451 0.038
ata. Sensitivity 0.929 0.966 0.953 0.960 0.929 0.929 0.929 0.829 0.929
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