

Treatment Effect of Balloon Pulmonary Angioplasty in CTEPH, Quantified by Automatic Comparative Imaging in CTPA

<u>Zhiwei Zhai</u>^{*}, Hideki Ota[‡], Marius Staring^{*}, Jan Stolk⁺, Koichiro Sugimura^o, Kei Takase[‡], Berend Stoel^{*}

Leiden University Medical Center, Netherlands

- * Div. of Image Processing, Dept. of Radiology
- ⁺ Dept. of Pulmonology
- Tohoku University Hospital, Japan

- [‡] Dept. of Diagnostic Radiology
- ^o Dept. of Cardiology

- Introduction to CTEPH
- Study population treated with BPA
- Methods of quantification
- Results & Discussion

Introduction

- Chronic thromboembolic pulmonary hypertension (CTEPH)
 - Caused by persistent obstruction of pulmonary arteries
 - Surgical treatment: pulmonary endarterectomy
 - Inoperable CTEPH: Balloon Pulmonary Angioplasty (BPA) is an alternative treatment

www.epresspack.net/bayer-riociguat

Introduction

Assessment of treatment effects

- Noninvasively: 6-min walk distance; brain natriuretic peptide (BNP) level; (dual-energy) CT pulmonary angiography (CTPA)
- Invasively: right heart catheterization (RHC) (gold standard)

Purpose of this study

 Automatic comparison of pre- and post-treatment CTPA, to provide a noninvasive assessment of BPA treatment

ESC-ERS Guidelines, European heart journal. 2015:ehv317 H Takagi et al., European Journal of Radiology. 2016;85(9):1574-80 JA Feinstein et al., Circulation 2001;103:10-13.

- Introduction to CTEPH
- Study population treated with BPA
- Methods of quantification
- Results & Discussion

I4 CTEPH patients treated with BPA

- Mean age 70.5 ± 24 years, 12 females (86%)
- Right heart catheterization (RHC) performed pre- and post-BPA:
 - Pulmonary artery pressure (PAP: mean, systolic and diastolic)
 - Pulmonary vascular resistance (PVR)
- CTPA of pre- and post-BPA were performed with iodine contrast
- Interval between CTPA and RHC was 0 37 days (median 2 days)
- All patient data were collected from Tohoku University Hospital (Japan)

- Introduction to CTEPH
- Study population treated with BPA
- Methods of quantification
- Results & Discussion

Methods

- Methods
 - Lung segmentation & lung vessel extraction
 - Atlas-based lung segmentation & graph-cuts based vessel extraction

Total lung

Vessel tree

- Automatic comparison of CTPAs of pre- and post-treatment
 - Pairwise image registration with volume correction
- Quantification of changes in perfusion using densitometry

Z Zhai, et al., SPIE Medical Imaging 2016 (pp. 97842K-97842K)

Methods

- Comparative imaging in CTPAs of pre- and post-treatment
 - Image registration of post-BPA and pre-BPA scans using Elastix
 - Volume correction using two-component model:

- Progression(x) =
 - $I_1(T(x)) I_0(x) \cdot Max\{\theta_{min}(I_0(x)), Min\{\theta_{max}(I_0(x)), det J_T(x)\}\}^{-1}$

S Klein et al. IEEE transactions on medical imaging 29.1 (2010): 196-205. M Staring et al. Medical Physics. 2014;41(2).

Methods

- Quantification of changes in perfusion
 - Vascular densitometry:

median and IQR of vascular densitometric changes (Δ VD)

- Introduction to CTEPH
- Study population treated with BPA
- Methods of quantification
- Results & Discussion

	Pre-BPA	Post-BPA	Change	p-value
RHC parameters				
sPAP (mmHg)	60.5 ± 33	$\textbf{36}\pm\textbf{19}$	$\textbf{-23}\pm\textbf{19}$	0.002
dPAP (mmHg)	20 ± 16	12.5 ± 11	-5 ± 11	0.006
mPAP (mmHg)	34.5 ± 17	21.5 ± 15	$\textbf{-12.5}\pm\textbf{14}$	0.003
PVR (dyne∙s/cm⁵)	496 ± 396	246 ± 185	$\textbf{-185}\pm409$	0.004
Density measurements (HU)				
Median VD	$\textbf{-415}\pm101$	$\textbf{-433} \pm \textbf{114}$	$\textbf{-51.5} \pm \textbf{20.8}$	<0.001
IQR of VD	437±73	475 ± 67	182 ± 60	<0.001

Changes in hemodynamic parameters and densitometry measurements

Changes in RHC parameters and density measurements between pre- and post-BPA were tested using paired t-tests or Wilcoxon signed-rank tests, as appropriate.

Spearman's correlation (R, p-value) between RHC changes and density changes

	ΔsPAP	ΔdPAP	ΔmPAP	ΔPVR
Median of ΔVD	(0.53, 0.054)	(0.18, 0.536)	(0.46, 0.095)	(0.28, 0.325)
IQR of ∆VD	(-0.58, 0.031)	(-0.71, 0.005)	(-0.71, 0.005)	(-0.77, 0.001)

Correlation between $\Delta mPAP$, ΔPVR and IQR of ΔVD

Results

Vascular densitometric changes quantification of 2 patients.

Discussion

Limitations

- The sample size of studied group is small
- Artery/vein were not separated

Conclusions:

- Hemodynamics were significantly improved after BPA, in the studied patient group
- Vascular densitometry can provide insight into local perfusion changes
- IQR of ΔVD is correlated with hemodynamic changes and may be used as a noninvasive measurement for assessing BPA treatment effects

Thank you!

Acknowledgements:

Leiden University Medical Center

- Berend Stoel
- Marius Staring
- Jan Stolk
- Denis Shamonin
- Ningning Xu
- Boudewijn Lelieveldt

CSC scholarship No.201406120046.

Tohoku University Hospital

- Hideki Ota
- Koichiro Sugimura
- Kei Takase
- Wenyu Sun

